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Proceeding on the  basis of the  claim by Perutz  (1949) 
tha t  there are in the  monoclinic horse methemoglobin  
crystal parallel sets of rodlike polypept ide chains wi th  
a 5 /~  repeat,  Bragg, Kendrew & Perutz  (1950). and  
Pauling & Corey. (1951b) have made  suggestions regarding 
the  atomic configurations wi thin  these chains. In  a 
detai led survey of polypeptide chain configurations in 
1950, Bragg. et al. specially favored their  214. ½ model.  
In  1951, Pauling & Corey (1951a) claimed the  a-helix 
as a 'principal feature'  of the horse hemoglobin structure 
(see also-Pauling, Corey & Branson, 1951). 

One  a rgument  advanced by Pauling & Corey (1951b) 
in favor of the  postulated rods being a-helices concerned 
the  well known feature of Perutz 's  three-dimensional  
vector  map  of the  horse methemoglobin  crystal, namely  
the  high vector densi ty at  about  5 ~ from the origin. 
Let  us write hv(x, y, z) for the  vector function of an a-helix 
and  4nrg"hv(r) for the  corresponding radial distr ibution 
function. Let  us also write gv(x, y, z) for the vector func- 
t ion depicted in the  contoured sections of Perutz 's  vector 
map  some of which are assembled in Fig. 1. F rom the 
contoured sections, Pauling & Corey obtained the func- 
t ion 4nr2gv(r) by numerical  integration.  Bo th  in the  ex- 
per imenta l  function, as we see from Fig. l, and in the  
radial distr ibution functions obtained by Pauling & 
Corey for a single a-helix, wi th  the C~ atoms in position 1 
and  in posit ion 2, there is a pronounced local m a x i m u m  
at about  5 ~ from the origin, which is followed by con- 
siderably lower values unt i l  a distance of about  9½/~ 
from the origin is reached. I t  was concluded by Pauling 
& Corey (1951b) tha t  the  ' rough agreement '  between the  
curves 'is to be considered as significant' .  If  we work out 
the  vector  funct ion for the  214.½ chain and  deduce the  
radial distr ibution function, we again obtain (Fig. 2(a)) 
a curve wi th  a pronounced local m a x i m u m  at  about  5 /~  
from the origin. Here too some 'rough agreement ' ,  at  
least in regard to the  maximum,  can be claimed. 

The question, however,  arises as to the significance of 

these comparisons. The 'experimental' functlon gv(x, y, z) 
is the  t ransform of relative intensities wi th  the intensi ty  
at  the  origin taken  equal to zero : in consequence the actual 
vector  densi ty  distr ibution in the  horse methemoglobin  
crystal is of the  form Agv(x, y, z)+B, where B is the 
average vector densi ty over the whole crystal. I t  follows 
tha t  the  actual radial distr ibution function is not  4~ragv(r) 
but  4~r~Agv (r) + 4ur~B. 

However,  there is a second type of comparison, on 
the  same lines, which is less difficult to evaluate.  This is 
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the  comparison of the  mean  vector distr ibutions as a 
function of r, the  comparison, tha t  is to say, of Agv(r) + B  
with the  spherically smoothed vector functions hv(r) 
derived from the a-helix in both  forms and from the  
214.½ model.  

In  Fig. 2(c) we depict  this funct ion hv(r) for the  a-helix 
wi th  the  C~ atoms in position 1, and in Fig. 2(b) for the  
214. ½ chain model.  These functions are monotonic  de- 
creasing over the whole of the  ranges shown. This is also 
the  case for the  a-hehx with the C~ atoms in position 2. 
However,  from the contoured sections of the  exper imental  
vector map  in Fig. 1, we see tha t  the  function gv(r), and  
therefore also the  function Agv(r) +B, drop to a m i n i m u m  
at some distance r 0 less than  4 A, subsequent ly developing 
a m a x i m u m  in the range 4-6 /~ .  There is therefore a lack 
of agreement  between the exper imenta l  function and the  
functions derived from each of the  chain models. Ne i ther  
the  214.½ chain model  nor  the  a-helix in ei ther form can 
account  for the  large vector  densi ty at  about  5 • from 
the origin in the  spherically smoothed experimental  vector  
map.  

If, however,  we look at the  contoured sections of the  
experimental  vector map  shown in Fig. 1, it  becomes 
clear tha t  it is beside the  point  to s tudy the  radial  
distr ibution function, or even the  spherically smoothed  
vector  function, so long as the  picture of the  horse 
hemoglobin structure is restricted to a parallel set of 
rodlike pblypeptide chains. Incomparably  more informa- 
t ion regarding the  high vector  densi ty  at  about  5 ~k from 
the origin is contained in the  vector  funct ion gv(x, y, z) 
depicted in the  sections than  in the  funct ion 4:~r'gv(r) or 
in the function gv(r). As we see in the sections 6(hj = 0-3, 
x ---- 0 and  in the central section normal  to the  x axis, 
there is a high vector densi ty at  about  4-6 /~ from the  
origin extending over a shell completely surrounding the  
origin, wi th  five pairs of regions of specially high densi ty  
wi thin  the  shell in widely separated directions from the  
origin. That  this feature of the  vector m a p - - w h i c h  Peru tz  

has called the '5 ~ shell'--cann0t be interpreted in terms 
of a 5 /~  repeat  along a set of parMlel rodlike polypept ide  
chains in any direction, no ma t t e r  how the  atomic 
configurations of the chains are chosen, seems self- 
evident .  The '5 /~ shell', the  outs tanding feature of t he  
experimental  vector map,  is essentially three-dimensional  
in character:  it  follows tha t  its in terpreta t ion mus t  be in 
terms of m a n y  pairs of a toms at 4-6 /~ apart  in a con- 
siderable var ie ty  of different orientations to one another  
(Wrinch, 1952a, b), and  cannot  be in terms of pairs of 
atoms restricted to a set of parallel uniaxial  (or biaxiM) 
structures. 
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Fig. 1. Sections of the vector map of the normal wet  monoclinic horse methemoglobin crystal with space group C2, for 
which a = 109, b ---- 63.2, c -- 54.4 J~ and fl ---- 111% The sections, assembled from Perutz 's  paper (1949), comprise the 
central  sections normal  to the a axis and containing the a and b axes, and the sections 60y/b = 0, 1, 2, 3. (Reproduced by 
permission of the Royal  Society.) 

T h e  fac t  t h a t  th is  s t a t e m e n t  r e g a r d i n g  t h e  rod l ike  
p o l y p e p t i d e  cha ins  has  been  qual i f ied  so as to  refer  specifi- 
ca l ly  to  a set  of such  s t r u c t u r e s  in parallel raises t h e  f u r t h e r  
ques t i on  as to  w h e t h e r  t h e  h y p o t h e s i s  of t h e  p resence  in 
t h e  horse  h e m o g l o b i n  s t r u c t u r e  of e i the r  t h e  a-hel ix  or 
of t h e  214. ½ m o d e l  can  p e r h a p s  be r e t a i n e d  b y  p lac ing  
t h e m  in  m a n y  or a t  leas t  severa l  d i f fe ren t  d i rec t ions .  
I t  is i n t e r e s t i ng  to  no t i ce  t h a t  u n d e r  these  c i r cums tances  
t h e  spher ica l ly  s m o o t h e d  v e c t o r  func t ions  of t h e  a -he l ix  
a n d  of t he  214.½ m o d e l  s h o w n  in Fig .  2 become  of con- 
s iderable  in teres t ,  s ince t h e y  wil l  also serve,  suf f ic ien t ly  
n e a r  t h e  origin,  as t he  spher ica l ly  s m o o t h e d  vec to r  func-  
t ions  for  a n y  n u m b e r  of cha ins  in  a n y  n u m b e r  of d i f fe ren t  
d i rec t ions .  H o w e v e r ,  t h e  conc lus ion  to  be d r a w n  is 
e x a c t l y  as before .  N o  set  of cha ins  of e i the r  t y p e  in  a n y  
n u m b e r  of d i f fe ren t  d i rec t ions  can  a c c o u n t  for  t he  5 /~ 
m a x i m u m  in t he  gv(r) func t i on  o b t a i n e d  f rom t h e  ex- 
p e r i m e n t a l  v e c t o r  m a p .  T h a t  a n y  m o d e l  of a success ion 
of a t o m s  w i t h  a t o m i c  n u m b e r s  as s imi lar  as those  of 
ca rbon ,  n i t r o g e n  a n d  o x y g e n  can  ach ieve  this  charac te r i s -  
t ic  seems h igh ly  ques t ionable .  Ce r t a in ly  none  of t he  o t h e r  
mode l s  sugges ted  for  p o l y p e p t i d e  cha ins  in  p ro te ins  
y ie lds  th is  m a x i m u m  ( B r a g g e t  al., 1950; P a u l i n g  & 
Corey,  1951a, b; Pau l ing ,  Corey  & Branson ,  1951). 

I n  v i ew  of t he  conc lus ion  t h a t  no i n t e r p r e t a t i o n  of t h e  
h igh  v e c t o r  d e n s i t y  a t  a b o u t  5 A f rom t h e  origin,  seen in  
P e r u t z ' s  vec to r  m a p ,  in  t e r m s  of 5 /~ r epea t s  a long  
rod l ike  p o l y p e p t i d e  cha ins  seems l ikely  to be successful ,  

t h e  c la im t h a t  t he re  a re  rod l ike  p o l y p e p t i d e  chains  in t h e  
horse  h e m o g l o b i n  s t r uc tu r e s  requi res  careful  e x a m i n a t i o n .  
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Fig. 2. (¢) The radial distribution function for the 214. 
model and (b) its spherically smoothed vector function. 
(e) The spherically smoothed vector function for the a- 
helix with the C~ atoms in position 1. 
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The s t u d y  o f  th is  claim in the l igh t  of the exper imenta l  
vector  map  forms the subject  of another  communicat ion.  

References 
"BI~AGG, W. L., KE~D~EW, J .  C. & P E R ~ Z ,  M. F. (1950). 

Prec. Roy. Soc. A, 2Oi~z 321. 
P A ~ N G ,  L. & COREY, R . B .  (1951a). Prec. Nat. Acad. 

Sci., Wash. 37, 235. 

P A ~ o ,  L. & CORE~', R . B .  (1951b). Prec. Nat. Acad. 
Sci., Wash. 37, 282. 

PAULINO, L., CO~EY, R . B .  & BR~SON, H . R .  (1951). 
Prec. Nat. Acad. Sci., Wash. 37, 205. 

PERUTZ, M . F .  (1949). Prec. Roy. Soc. A, 195, 474. 
W~INCH, D. (1952a). J. Chem. Phys. 20, 1051. 
WRI~C~, D. (1952b). J. Chem. Phys. 20, 1332. 

Acta Cryst. (1953,). 6, 564 

A c o n t r i b u t i o n  to the  d e t e r m i n a t i o n  of  s i g n s  in  the  F o u r i e r  a n a l y s i s  of  c rys ta l s .  By O.A. 
T~scn~., Department of Physics, University of Cape Town, South Africa 

(Received 14 

I n  the  pre l iminary  analysis  of a crystal  s t ructure  i t  m a y  
become clear from s y m m e t r y  or packing t h a t  the  electron 
dens i ty  is low and  near ly  uniform over certain planes. 
The writer ,  in ana lys ing  a long-chain f a t t y  acid, was able 
to conclude from the  possible packing t h a t  the  dens i ty  
was low and  near ly  uni form over the three bounding 
planes of a su i tab ly  chosen un i t  cell. A two-dimensional  
project ion of such a cell parallel  to one of the axes will 
have  low, uni form dens i ty  along its bounding lines. The 
existence of uniform or zero dens i ty  over certain lines 
and  planes mus t  determine certain relat ions between the 
coefficients of the Fourier  series giving the densi ty,  and 
this  m a y  help to determine thei r  signs. 

Consider a two-dimensional  project ion on the bc plane, 
hav ing  a centre of s y m m e t r y  which is also the origin of 
coordinates.  I f  (v, w) are the fract ional  coordinates of a 
po in t  in the project ion in te rms of 2~, the densi ty,  
a(v, w), is given b y  

Sa(v, w) = A(O, v)-~A(l, v) cos lw-~B(l, v) sin lw (1) 

(James, 1948), S being the area of the un i t  projection, 
wi th  

k 

A(0, v) = F(000) ÷2~:F(0k0).cos kv, 
1 

A(1,v) = 2 F ( 0 0 / ) + 2 ~  (F(Okl)+F(Okl)}coskv, (2) 
1 

b 

--B(1, v) = 2 ~  ~ {F(Okl)--/P(O~c/)) sin kv . 
1 

Suppose a(v, w) to be cons tant  along a line v ---- eonst. 
in the  project ion th roughout  .the range w ---- 0 to w ---- 2~. 
Then,  in the Fourier  series (1) A(1, v) and B(1, v) must  
vanish,  while A(0, v) mus t  be constant .  I f  the  dens i ty  

is ve ry  small  or zero, A(0, v) will be small or zero also. 
We consider the case in which the dens i ty  is constant  
along the  line v = 0. Equa t ions  (2) then  give 

k 
½2'(000) + ~ F(0k0) = c o n s t a n t ,  (a) 

1 
k 

F(00I )+  Z { F ( 0 k l ) + F ( 0 k l ) }  = 0 for a n y  value of I. (b) 
1 
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We can draw no conclusions from the vanishing of 
B(l,v) since sin kv is itself zero. 

I f  the  dens i ty  is uniform or zero along the line w ~- 0, 
we have  the analogous relations 

l 
½F(000) q - ~  F(00I) ---- c o n s t a n t ,  (a') 

1 
l 

F(0k0) + ~  (F(Okl)+F(Okl)} ---- 0, for a n y  value of k . (b') 
1 

I f  the  absolute values of 2' have been determined,  
conclusions about  the signs of the coefficients m a y  be 
drawn, provided t h a t  some of them are a l ready known.  
In  one example m a n y  of the signs of F(OOl) were fair ly 
cer ta inly known. Equa t ions  (b) allowed other  signs to be 
determined.  One such equat ion  ran  

F(005) +F(015)  +F(015)  + F(025) +F(025)  

--7-9 ±2"3 :J: 2.7 0 0 

+ F(035) +F(o~5) +F(045) +F(o~5) = o ,  
0 0 0 0 

from which i t  is. fair ly clear t h a t  bo th  F(015) and  F(0 i5)  
are positive. 

Prof. R.  W. James  has  pointed  out  to me t h a t  the  
results  can be extended to three dimensions, and  to planes  
of uniform densi ty  t h a t  do not  pass th rough  the  origin. 
For  example,  if the  dens i ty  is uniform over the  plane 
w = 0 ,  

l 
F(hkO) ~ . ~  (F(hkl)+ F(hkl) } = 0 

1 

for a n y  pair  of indices h and  k. Each  such equat ion  
corresponds to the sum of the s t ructure  factors along a n y  

row of reciprocal-lattice points  perpendicular  to the  plane 
of constant  densi ty.  I f  the  dens i ty  is not  zero, the  row 
th rough  the origin mus t  be excluded. 
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